
Structured Variables in 
FileMaker

Sylvain Parent 2017



Sylvain Parent
Jefo Logistique, Saint-Hyacinthe, Québec, Canada 

LinkedIn



On the menu this morning
1. What are structured variables  

     list, dictionary and matrix  

2. Build structured variable with CLOB 

3. Persistent variables 

4. Demo of an Encapsulated FileMaker Solution  

5. What is an objectoid module 

6. Demo of the Ephemeral Matrix

3



Structured variables
• FileMaker list (list separated by ¶ or a list of words) 

• Array (build with CLOB or similar) 

• Dictionary (SFR or similar) 

• Matrix or two dimensional array (CLOB or similar)  

• A Structured variables who contain any combination of array, 
dictionary, matrix and even structured variable.

4



A structured variable is first a 
structure of information  

then it is a technique.



All structured variables must be 
serialized but not all the time



$$myVariable [x]

The evil loved because 
misnamed variable that could 

become your “best”

7



According to the FileMaker documentation

• In $$myVariable [x] x is a repetition number 

• Everybody (maybe just me) inferred that $$myVariable will give 
acces to all of the repetitions  
when in fact $$myVariable = $$myVariable [1] 

• So we cannot use it as an array 

• Can they be used for anything other than naming buttons?

8



If we change the meaning of X 
a few doors open.



$$myVariable[referenceID]

10

Where referenceID is a number referring to any object, information  
or structured variable.



Persistent Variables  
($$myVariable [referenceID])  

• Persistent variable is a private global variable accessible only by its ID via scripts or 
CFs dedicated to its manipulation. 

• A module built on a persistent variable can only use integer as ID. 

• A module can emit the ID in this case it will be significant for the module. 

• A module can receive ID issued by other in this case it will be significant for the user of 
the module. 

• The Persistent variables looks like an object in object-oriented programming (objectoid) 

• The Persistent variables are not object.

11



referenceID may refer to
• An object that already has a native ID in FileMaker 

• Layout ID, Script ID, Window ID  

• An information created by convention 

• kOnObjectEnter, kOnObjectValidate, kInterfaceLanguage 

• An ID build by logic  

• $$buttomName [$$buttomID]  
                 where $$buttomID = windowID + layoutID + buttonNumber

12



referenceID may refer to

• Any structured variables 

• List, dictionary, array, matrix 

• A cell of an ephemeral matrix 

• ….

13



Objectoid PV
1. Filemaker PV are conceptually similar to real-world objects: they too consist of state and related 

behaviour. 

2. A FileMaker PV stores its state in variables ($$) and exposes its behaviour through custom 
functions or scripts.  

3. CF or scripts operate on a PV’s internal state and serve as the primary mechanism for 
communication to the PV. 

4. Hiding internal state and requiring all interaction to be performed through a PV’s custom 
functions or scripts is known as data encapsulation — a fundamental principle of object-oriented 
programming. 

5. We have a “Good” PV if the interface is independent of the implementation  
if $$myVariable [referenceID] can be replaced by any other variable, or element of a list, 
dictionary, CLOB or anything that may contain information in memory.

14



Demo



Software Object
1. Software objects are conceptually similar to real-world objects: they too consist of 

state and related behavior.  

2. An object stores its state in fields (variables in some programming languages) and 
exposes its behavior through methods (functions in some programming languages).  

3. Methods operate on an object's internal state and serve as the primary mechanism 
for object-to-object communication.  

4. Hiding internal state and requiring all interaction to be performed through an 
object's methods is known as data encapsulation — a fundamental principle of 
object-oriented programming. 

5. We have a «Solid» object if the interface is independent of the implementation.

16



FileMaker Objectoid

• Software objects are conceptually similar to real-world objects: they 
too consist of state and related behavior.  

• Filemaker module are conceptually similar to real-world objects: they 
too consist of state and related behavior. 

17



• An object stores its state in fields (variables in some programming 
languages) and exposes its behaviour through methods (functions 
in some programming languages).  

• A FileMaker module stores its state in table/fields and variables and 
exposes its behaviour to other module through scripts or customs 
functions. 

18

FileMaker Objectoid



• Methods operate on an object’s internal state and serve as the 
primary mechanism for object-to-object communication. 

• Custom functions or scripts operate on a module’s internal state and 
serve as the primary mechanism for module-to-module 
communication.

19

FileMaker Objectoid



• Hiding internal state and requiring all interaction to be performed 
through an object’s methods is known as data encapsulation — a 
fundamental principle of object-oriented programming. 

• Hiding internal state and requiring all interaction to be performed 
through a module’s custom functions or scripts is known as data 
encapsulation — a fundamental principle of object-oriented 
programming.

20

FileMaker Objectoid



• We have a “Good” object if the interface is independent of the 
implementation. 

• We have a “Good” module if the interface is independent of the 
implementation.

21

FileMaker Objectoid



Module as an object

• The interface is independent of the implementation  
if the structure of the module a can be replaced by any other 
structure or external solution without any change in module B. 

• Most of the time there is an information dependency that must be 
recreated.:- (

22



An objectoid module must receive or return one or 
more of these elements:

23



An objectoid module must receive or return one or 
more of these elements:

• A word or a sentence

23



An objectoid module must receive or return one or 
more of these elements:

• A word or a sentence

• An array (or list)

23



An objectoid module must receive or return one or 
more of these elements:

• A word or a sentence

• An array (or list)

• A matrix

23



An objectoid module must receive or return one or 
more of these elements:

• A word or a sentence

• An array (or list)

• A matrix

• A string (JSON, XML, CSV, ExecuteSql result, etc.)

23



An objectoid module must receive or return one or 
more of these elements:

• A word or a sentence

• An array (or list)

• A matrix

• A string (JSON, XML, CSV, ExecuteSql result, etc.)

• A structured variable 

23



An objectoid module must receive or return one or 
more of these elements:

• A word or a sentence

• An array (or list)

• A matrix

• A string (JSON, XML, CSV, ExecuteSql result, etc.)

• A structured variable 

• All this in the form of serialized chain or a reference in memory.

23



An objectoid module :

24



An objectoid module :

• Can receive several parameters. Each of them can be from one 
time to another different structured variable.

24



An objectoid module :

• Can receive several parameters. Each of them can be from one 
time to another different structured variable.

• Can return several parameters. Each of them can be from one 
time to another different structured variable.

24



An objectoid module :

• Can receive several parameters. Each of them can be from one 
time to another different structured variable.

• Can return several parameters. Each of them can be from one 
time to another different structured variable.

• Must see the use of parameters as communication channels and 
not as arguments to a calculation.

24



Structured variables can be stored

25



Structured variables can be stored
• in a Let () variable,

25



Structured variables can be stored
• in a Let () variable,

• in a local variable

25



Structured variables can be stored
• in a Let () variable,

• in a local variable

• in a global variable 

25



Structured variables can be stored
• in a Let () variable,

• in a local variable

• in a global variable 

• in a persistent variable PV

25



Structured variables can be stored
• in a Let () variable,

• in a local variable

• in a global variable 

• in a persistent variable PV

• inside the sidereal space where the Get (ScriptParameter) and Get 
(ScriptResult) exists

25



Structured variables can be stored
• in a Let () variable,

• in a local variable

• in a global variable 

• in a persistent variable PV

• inside the sidereal space where the Get (ScriptParameter) and Get 
(ScriptResult) exists

• must be serialized on demand for PSOS or file-to-file communication

25



Structured variables can be serialized

26



Structured variables can be serialized
• With XML or any XMLoid technique

26



Structured variables can be serialized
• With XML or any XMLoid technique

• With FMStandards technique

26



Structured variables can be serialized
• With XML or any XMLoid technique

• With FMStandards technique

• With Dictionary technique (SFR)

26



Structured variables can be serialized
• With XML or any XMLoid technique

• With FMStandards technique

• With Dictionary technique (SFR)

• With Property List technique

26



Structured variables can be serialized
• With XML or any XMLoid technique

• With FMStandards technique

• With Dictionary technique (SFR)

• With Property List technique

• With CLOB technique

26



Structured variables can be serialized
• With XML or any XMLoid technique

• With FMStandards technique

• With Dictionary technique (SFR)

• With Property List technique

• With CLOB technique

• With JSON functions (v16)

26



Structured variables can be serialized
• With XML or any XMLoid technique

• With FMStandards technique

• With Dictionary technique (SFR)

• With Property List technique

• With CLOB technique

• With JSON functions (v16)

• With plug-in

26



Structured variables can be serialized
• With XML or any XMLoid technique

• With FMStandards technique

• With Dictionary technique (SFR)

• With Property List technique

• With CLOB technique

• With JSON functions (v16)

• With plug-in

26

Short! It can become 
complicated



Or stay simple



CLOB

TheEnd3+3+0+0+0|



Ephemeral matrix 
demo

The ephemeral (butterfly) live only a few hours and takes the 
opportunity to mate in full flight. The male dies after mating and 

the female after laying.


